Решение уравнений математической физики методом конечных элементов
7

Уравнение Лапласа

 

Уравнение Лапласа  дифференциальное уравнение в частных производных. В трёхмерном пространстве уравнение Лапласа записывается так:

\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0

и является частным случаем уравнения Гельмгольца.

Уравнение рассматривают также в двумерном и одномерном пространстве. В двумерном пространстве уравнение Лапласа записывается:

\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}  = 0

Также и в n-мерном пространстве. В этом случае нулю приравнивается сумма n вторых производных.

С помощью дифференциального оператора

\triangle = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} + ...

— (оператора Лапласа) — это уравнение записывается (для любой размерности) одинаково как \triangle u = 0

В этом случае размерность пространства указывается явно (или подразумевается).

Уравнение Лапласа относится к эллиптическому виду. Функции, являющиеся решениями уравнения Лапласа, называются гармоническими функциями. Неоднородное уравнение Лапласа называется уравнением Пуассона.

 

В зависимости от конфигурации области, в которой решается задача, удобно решать уравнения эллиптического типа в различных системах координат. При этом оператор Лапласа в разных системах координат выглядит по-разному.

Введем выражения для оператора Лапласа в разных системах координат.

Рассмотрим 2x -мерный случай: